Pull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation

نویسندگان

  • Han Yan
  • Wenming Zhang
  • Hui-Ming Jiang
  • Kai-Ming Hu
چکیده

In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and the flutter. The former is induced by the applied voltage which exceeds the pull-in value while the latter occurs as the velocity of steady flow get closer to the critical velocity. The statically and dynamically stable regions are presented by thoroughly studying the two forms of instability. It is demonstrated that the steady flow can remarkably extend the dynamic stable range of pull-in while the applied voltage slightly decreases the critical velocity. It is also shown that the dc voltage and the steady flow can adjust the resonant frequency while the ac voltage can modulate the vibrational amplitude of the resonator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators

This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...

متن کامل

Static Pull-in Analysis of Capacitive FGM Nanocantilevers Subjected to Thermal Moment using Eringen’s Nonlocal Elasticity

This paper aims to investigate the pull-in phenomenon of functionally graded (FG) capacitive nanocantilevers subjected to an electrostatic force and thermal moment due to an applied voltage and thermal shock considering intermolecular force within the framework of nonlocal elasticity theory to account for the small scale effect. The FG nano-beam is made of mixture of metal and ceramic which the...

متن کامل

Nonlinear static and dynamic behaviors of a microresonator under discontinuous electrostatic actuation

This article studied static deflection, natural frequency and nonlinear vibration of a clamped-clamped microbeam under discontinues electrostatic actuation. The electrostatic actuation was induced by applying AC-DC voltage between the microbeam and electrode plate. In contrast to previous works, it was assumed that length of the electrode plate was smaller than that of the microbeam. In additio...

متن کامل

Study Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model

Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for...

متن کامل

Suspended microchannel resonators for biomolecular detection

We have demonstrated a new approach for detecting biomolecular mass in the aqueous environment. Known as the suspended microchannel resonator (SMR), target molecules flow through a suspended microchannel and are captured by receptor molecules attached to the interior channel walls [1]. As with other resonant mass sensors, the SMR detects the amount of captured target molecules via the change in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017